Профессор химии из Флориды нашел способ инициировать процесс фотосинтеза в синтетическом материале, одновременно превращая парниковые газы в чистый воздух и производя энергию.
Этот процесс обладает большим потенциалом для создания технологии, которая могла бы значительно сократить выбросы парниковых газов, связанных с изменением климата, а также создать чистый способ производства энергии.
«Эта работа — прорыв»,— сказал Фернандо Урибе-Ромо (Fernando Uribe-Romo), профессор из Университета центральной Флориды (University of Central Florida).
«Получить материалы, которые поглотят определенный цвет света, очень трудно с научной точки зрения, мы вносим вклад в разработку технологии, которая может помочь уменьшить выбросы парниковых газов».
Результаты исследования были опубликованы в Journal of Materials Chemistry A.
Урибе-Ромо и его команда студентов создали способ вызвать химическую реакцию в синтетическом материале, называемом металлорганические каркасы (MOF), который разделяет углекислый газ на безвредные органические материалы.
Представьте это как искусственный процесс фотосинтеза, подобный тому, как растения преобразуют для себя углекислый газ (CO2) и солнечный свет в пищу. Но вместо производства продуктов питания метод Урибе-Ромо производит «солнечное» топливо.
Это то, что ученые всего мира пытались добиться в течение многих лет, но задача состоит в том, чтобы найти способ видимому свету вызывать химическое преобразование.
Ультрафиолетовые лучи обладают достаточной энергией для реакции в обычных материалах, таких как двуокись титана, но количество УФ, получаемого Землей от Солнца, составляет лишь около 4% от общего света. Видимый диапазон — от фиолетового до красного — это большинство солнечных лучей, но есть несколько материалов, которые собирают эти светлые цвета, чтобы создать химическую реакцию, превращающую CO2 в топливо.
Исследователи перепробовали много материалов, но те, которые могут поглощать видимый свет, имеют тенденцию быть редкими и дорогими, такие как платина, рений и иридий, которые делают химический процесс дорогостоящим.
Урибе-Ромо использовал титан, обычный нетоксичный металл и добавлял органические молекулы, которые действуют как сборщики света, чтобы проверить, будет ли работать такая конфигурация.
Молекулы световой антенны, называемые N-алкил-2-аминотерефталатами, могут быть предназначены для поглощения определенных цветов света при включении в MOF. В этом случае он синхронизировал его для синего цвета.
Для проверки гипотезы его команда собрала голубой светодиодный фотореактор. Измеренное количество двуокиси углерода медленно вводилось в фотореактор — светящийся синий цилиндр, который выглядит как солярий - чтобы увидеть, произойдет ли реакция.
Светящийся синий свет исходил из полосок светодиодных фонарей внутри камеры цилиндра и имитировал голубую длину волны солнца.
Это сработало, и химическая реакция в процессе очистки воздуха превратила углекислый газ в две преобразованные формы углерода: формиат и формамид (два вида солнечного топлива).
«Цель состоит в том, чтобы продолжить тонкую настройку подхода, чтобы мы могли создавать большее количество уменьшенного углерода, чтобы процесс был более эффективным»,— сказал Урибе-Ромо.
Ученый хочет узнать, могут ли другие волны видимого света также инициировать реакцию с корректировками синтетического материала. Если это сработает, то процесс может стать значительным способом помочь сократить выбросы парниковых газов.
«Идея состояла бы в том, чтобы создать станции, которые улавливали бы большое количество CO2, например, рядом с электростанцией. Станция будет собирать газ, будет проходить процесс и парниковые газы будут перерабатываться, производя энергию, которая будет возвращена электростанции».
Возможно, когда-нибудь для крыши дома можно будет приобрести черепицу из материала, очищающего воздух в районе, производящего энергию, которая могла бы использоваться прямо в доме.
«Это потребует новых технологий и инфраструктуры»,— сказал Урибе-Ромо. «Но это возможно».
Автор: Zenaida Gonzalez Kotala. Из материалов: Colleges & Campus News.
от 4 790 USD
Сетевая солнечная электростанция для дома и зеленого тарифа, пиковой мощностью 10 кВт.
КПД системы: 98%; Годовая выработка: ≈10 547 кВт*ч
Годовой доход: ≈2 192 USD
Гарантийный ...
от 6 962 USD
Сетевая солнечная электростанция для дома и зеленого тарифа, пиковой мощностью 15 кВт.
КПД системы: 98%; Годовая выработка: ≈16 500 кВт*ч
Годовой доход: ≈3 089 USD
Гарантийный ...
от 13 238 USD
Сетевая солнечная электростанция для дома и зеленого тарифа, пиковой мощностью 30 кВт.
КПД системы: 98%; Годовая выработка: ≈32 000 кВт*ч
Годовой доход: ≈5 800 USD
Гарантийный ...
от 0,92 USD за 1 Вт
от 1,17 USD за 1 Вт
от 1,10 USD за 1 Вт